Pourquoi une face cachée sur la lune?
Pour planter le décor général, la lune en orbite autour de la Terre est soumise à deux forces:
- l'attraction de la Terre, six fois plus grosse qu'elle.
- une force centrifuge liée à sa rotation autour de la Terre, exactement comme lorsque vous prenez un virage serré en voiture.
La gravité terrestre attire la lune vers la Terre, la force centrifuge la repousse. Comme ces deux forces s'équilibrent à peu près au centre de gravité de la lune, sa distance à la Terre reste à peu près constante entre deux révolutions.
Jusqu'à présent on a raisonné globalement. Vous êtes dans la lune? Profitons-en pour voir ce qui s'y passe en surface:
- le côté le plus proche de la Terre subit plus fortement l'attraction de la Terre;
- du côté opposé, la force d'attraction est plus faible car on est plus loin de la Terre. C'est donc la force centrifuge qui l'emporte et "tire" ce côté-là loin de la Terre.
Si la lune était en pâte molle, elle aurait tendance à se déformer en une espèce de ballon de rugby, pointant en permanence vers la Terre.
En réalité la lune tourne sur elle-même. Si elle a un tant soit peu la forme d'un ballon de rugby, le système de forces qu'on vient de décrire tend à le maintenir aligné en permanence sur l'axe Terre-Lune.
Certes au début la lune n'avait sans doute pas la forme d'un ballon de rugby. Mais il aura suffi d'une petite déformation initiale pour que s'amorce et s'amplifie ce phénomène de synchronisation-déformation. Voilà pourquoi nous voyons toujours la même partie (renflée) de la lune et jamais sa face cachée. On observe la même chose sur la plupart des satellites des autres planètes du système solaire.
Les marées
C'est le même système de forces opposées qui est à l'origine de nos marées. Mais, objecterez-vous si vous avez bien les pieds sur Terre, notre planète tourne autour du soleil, pas autour de la lune!
En réalité, les deux planètes tournent ensemble autour du centre de gravité Terre-Lune, qui se situe à quelques milliers de kilomètres de la Terre (source de l'illustration ici). Et le raisonnement précédent s'applique de la même façon à la Terre soumise à l'attraction lunaire. Cette fois-ci le résultat se fait directement sentir sur le niveau des océans (surtout que les chocs contre les continents peuvent amplifier considérablement ces mouvements) qui forment des bourrelets des deux côtés de notre planète. Comme notre planète tourne sur elle-même en 24H, il y a donc bien deux marées hautes à 12H d'intervalle.
(source: Relais d'sciences)
Marée lunaire ou solaire?
Mais au fait, pourquoi serait-ce la lune qui crée les marées et pas le soleil? Voyons un peu les ordres de grandeur:
Masse du Soleil = 2 1030 kg soit 27 000 000 de fois la masse de la Lune (7 1022 kg)
Distance Soleil-Terre = 1,5 108 km soit 390 x distance lune-Terre (390 000 km)
La force de gravité est proportionnelle à la masse sur le carré de la distance, celle du soleil vaut 177 fois l'attraction de la lune (27 000 000/390²)! De quoi tomber de la lune, si j'ose dire: si le soleil nous attire plus que la lune, ne devrait-il pas contribuer beaucoup plus fortement au phénomène des marées?
En fait, ce qui qui crée les marées n'est pas cette force de gravité, mais la différence entre la force de gravité et la force centrifuge. Comme celle-ci a pour valeur constante la force de gravité au centre de la planète, la force de la marée est proportionnelle à la variation de la force de gravité en fonction de la distance (on appelle ça le gradient). Autrement dit, une force en M/D3 (avec D distance de la Terre à l'astre, si les calculs vous intéressent regardez ici par exemple). Et effectivement 27 000 000 / 3903 = 0,45. L'influence du soleil sur les marées est moitié moindre que celle de la Lune. Etonnant, non?
On lui doit la vie...
Ces interactions entre Terre et lune cachent bien d'autres secrets. La Terre tourne beaucoup plus vite sur elle-même que la lune (24H contre 28 jours). Ses bourrelets de mer haute sont donc toujours un petit peu en avance sur l'axe Terre-Lune et "tirent" la lune vers l'avant. La lune s'écarte donc doucement de la Terre de 4 cm par an, en accélérant. Au début de l'ère primaire la lune n'était qu'à 150 000 km de la Terre, contre plus du double aujourd'hui. A cette distance, elle provoquait des marées hautes de milliers de mètres, dévastant les continents et dissolvant au passage les minéraux nécessaires à l'apparition de la vie. Par chance, cela fait maintenant des lunes que notre satellite s'est suffisamment éloignée de nous pour ne plus nous infliger de tels raz-de-marées.
A l'inverse la lune est toujours en retard sur les bourrelets terrestres des marées hautes (source de l'illustration ici). Elle attire donc ceux-ci en permanence et finalement ralentit la rotation de la Terre, au même titre que les frictions des marées contre les continents. En quatre milliards d'années la durée de nos journées sur Terre a été divisée par quatre, grâce à la lune. Et heureusement, car une grande vitesse de rotation est synonyme de vents violents et de cataclysmes permanents! On lui doit donc une fière chandelle à la lune, d'autant que comme cadeau Bonux, sa présence stabilise aussi l'inclinaison de l'axe de rotation de la Terre par rapport à l'écliptique. Sans elle, cet axe -un peu lunatique serait-on tenté de dire- basculerait brusquement de temps à autre, provoquant de terribles bouleversements climatiques. Moralité: même les vieilles lunes sont parfois providentielles.
Finalement notre vie de couple avec la Lune, c'est une sorte d'histoire d'amour à l'envers: ça a commencé de façon catastrophique et ça se termine par une lune de miel permanente.
Sources:
Robert in Space: un excellent site sur l'astronomie, .
Le site de l'université de Nice, très pédagogique.
Je vous recommande aussi ce petit film sur la lune et ce site sur la lune, très bien fait